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FOREWORD

The work described in this report was conducted in the Electronics
Division as a part of the NOLC very-low-frequency research prograin,
which is jointly sponsored by this Lﬂé,b,o;rato:ry“'.s Foundational Research
program, WepTask R360-FR-104/21};1/R011-01-001, and the Office of
Naval Research, Code 418, under P. & 3-0012.

C. J. HUMPHREYS
"Head, Research Department

ABSTRAGT

Superdirectivity may be achieved with short VLF loop arrays because
the beam width depends only upon the number of loops and not upon the
length of the array. In addition, the upual factors limiting superdirec-
tivity are not as prevalent in these arrays because of the decoupling
between VLF loops.

Expressions are derived for the beam width, effective height, recep-
tion pattern, amplitude and position of the back lobes, and the effects of
voltage phase and amplitude differences between loops. These equations
describe short arrays of any number of loops. The most serious limita-
tion concerning the directivity of superdirective loop arrays is caused
by the voltage phase and amplitude differences between loops. These
differences between adjacent loops combine to obscure the nulls and
deteriorate the reception pattern.
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INTRODUCTION

The superdirective antenna of infinitesimally small size, with its
possibility of infinite gain, has been discussed by several authors (Ref.
1-6). These authors have pointed out that such arrays are impractical
because of basic limitations such as narrow bandwidth, high losses, and
critical tolerances in individual loop voltages. Nevertheless, moderate
superdirectivity has been achieved (Ref. 7, 8) with practical arrays. It
has been shown (Ref. 8) that superdirectivity can be obtained from
radiators that are decoupled from one another. The elements of receiv-
ing arrays at VLF can very easily be decoupled since they are so small
compared with the wavelength.

At very low frequencies, it is very difficult to obtain highly direc-
tive antenna patterns. Large tracts of land are needed because of the
long wavelengths involved. However, it appears that arrays can be
greatly reduced in size by using the principle of superdirectivity. Con-
siderable directivity can be achieved with a superdirective loop array
that is only a small fraction of a wavelength in size. These superdirec-
tive receiving antennas are possible at VLF because the decoupling
between loops (Ref. 9) makes the usual limiting factors, such as narrow
bandwidth and high losses, extremely small. The critical tolerance in
individual loop voltages is the factor that limits the number of loops (n)
that can be used, which limits the directivity.

The characteristics and performance of short two- and three-loop
arrays have been discussed previously (Ref. 9 and 10). This report
will expand the subject to include the radiation pattern characteristics,
the effective height, and the effect of phase and amplitude errors on the
short n-loop superdirective array.

RADIATION PATTERN CHARACTERISTICS

In this section, the important characteristics of the n-loop array
pattern are deduced from corresponding equations of the two- and three-
loop arrays. Egquations for the positions of the side lobes and side nulls,
the beam width, and the ratios of side lobe and back lobe to front lobe
are presented.



The horizontal pattern of the horizontal array with the planes of the
loops oriented in a vertical plane (Ref. 9) is shown in Figure 1. This
pattern is described by equations (1), (2), and (3). For the two-loop
array

IE | cos [ZT;\D(cos ¢ - cos tpo)] (1)

¢

and for the three-loop array

|E | = cos (p[zT;D(cos(p - cos cpo)]z (2)

¢

where
E = relative voltage received from direction ¢ compared with
the voltage from one loop

¢ = angle of received signal in the horizontal plane measured
from the plane of loops

D = distance between loops

A = free-space wavelength
In these equations, D << A\, and there is a phase difference of 6 - m
between identical adjacent loops, where § is the delay between adjacent

loops. By mathematical induction, the pattern for the n-166p arfay is
described as

|E<PI = cos (p[ZT;\D(coscp - cos (po)]‘n-l (3)

Equation (3) is expressed in terms of (a) distance between loops in wave-
lengths, D/A, and (b) the null position, ¢,, that is located between the
back lobe and the side lobes (see Figure I). For the n-loop array, the
null position depends upon the delay between adjacent loops and the free-
space propagation time between loops, as expressed by -

)
9, = arc cos D/Vo (4)

where v is the velocity of light. The null position may be moved about
the back‘ half of the pattern to reject unwanted signals by varying the
delay, 6, between adjacent loops.
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The beam width is a measure of the directivity of an antenna. The
half-power beam width, 2¢,. of the n-loop array in terms of the null
position is

l -cosg n-1
: ) (5)

COBPp = 0.707 (cos Pp- COBP,

when D << A, The narrowest beam width occurs when the null position
approaches 90 deg. Then

n
ZcpA = 2 arc cos+/0.707 (6)

When the null position is at 180 deg, the beam width is greatest. The
beam widths at these two extremes are plotted in Figure 2 as a function
of the number of loops in the array. There is a spread of only about
10 deg between the extremes where the numbers of loops are greater.
The beam width is not a function of the distance between loops, and
herein lies the possibility of obtaining superdirectivity.

The amplitudes of the back lobes are an indication of the unidirec-
tional properties of the array pattern. Although therec are three back
lobes, one at ¢ = 180 deg and two symmetrically located about this one
(see Figure 1), only the lobe at ¢ = 180 deg is called the back lobe; the '
two lobes on either side of the back lobe are called side lobes. The
ratio of the front lobe to the back lobe as derived from equation (3) is

1 - cos @, n-1
RO AT cosp, (7)

It is obvious from equation (7) that a large number of loops in the
array would cause the back lobe to be much smaller than the front lobe.
The front-lobe-to-side-lobe ratio can also be derived from equation (3).
To do this, the position of the side lobe maximum must first be deter-
mined by differentiating equation (3) and equating the results to zero.
Then the position of the side lobe is

1
%, = arccos (;cos cpo) (8)

Equation (8) can now be used in conjunction with (3) to derive the front-
lobe-to-side-lobe ratio, which is

i n n‘l-coscpo n-1
Ry = (coacpu)( l-n (9)




HALF-POWER BEAM WIDTH (DEG)

90

80

BEAM WIDTH

80 -

ol

30+

20

('} o

2 = TOTAL LENGTH
OF ARRAY

- -220

1

-180

--140

1

-120

—-100

-1-80

FIGURE 2. Beam Widths and Effective Heights for
Superdirective Arrays

EFFECTIVE HEIGHT (DB)



From equations (7) and (9), it is obvious that the loop array patterns
become very unidirectional as the number of loops is increased. This
is important in applications where the loop array is in a field of multiple
sources, such as sferics at VLF.

EFFECTIVE HEIGHT

Moderately narrow beams can be achieved with a few loops, but in
return, the effective height is reduced; this is shown in Figure 2. The
effective height of an n-loop array as derived from equation (3) is

h_ = 20(n - 1)1og10[2"TD(1 - coacpoil (10)

This is the effective height in db for an n-loop array compared with that
for a one-loop array. In Figure 2, the effective height is plotted versus
the number of loops for three different array lengths. The vertical dis-
tance between equal-array-length curves indicates the range of effective
heights for null positions from 90 deg to 180 deg. The very small effec-
tive heights of the shorter arrays could make them impractical unless
loops with very large effective heights are used to make up the array.
Large ground-return inverted loops or perhaps short Beverage antennas
would be a practical element to use because of their large effective heights.

THE EFFECT OF PHASE AND AMPLITUDE ERRORS

The foregoing analysis has assumed that the received signals have
been of equal amplitude and that each loop voltage has had the proper
phase to cancel at the null angles. As the number of loops is increased,
any departure from this assumption will reduce the null depths. An
analysis of the null voltage where there are small inequalities in loop-
voltage phase and amplitude has been made (Ref. 9). The resultant null
voltage was found to be the sum of the voltage amplitude differences
between adjacent loops, Aen-l, n’ in quadrature with the sum of the phase
differences in radians between adjacent loops, A6 » which is expressed
as

n-1l,n

Er = I?Aen-l,n ) jELiAen-l,n

(11y




where E; is the amplitude of the voltage from one loop. The voltage
differences between adjacent loops will tend to deteriorate the reception
pattern as the number of loops is increased. Because highly directive
loop arrays require accurate matching of individual loops and delay
lines, the feasibility of a practical array will depend upon the degree of
accuracy attainable, and this can only be determined by experiment.

SUMMARY AND CONCLUSIONS

Superdirectivity may be achieved with short VLF loop arrays because
the beam width is not a function of the length of the array but of the num-
ber of loops in the array. Also, the usual limiting factors in superdirec-
tive arrays, such as narrow bandwidth and high losses, are extremely
small because of the decoupling between loops at long wavelengths. The
directivity is limited, however, by the critical tolerance in adjacent
loop voltages.

The effective height and all of the pattern characteristics of the short
array, such as beam width and back-lobe amplitude and position, can be
expressed in terms of the selected null position and the distance between
loops for a given number of loops. The assumption is made that the dis-
tance between loops is much smaller than a wavelength, which is valid
at VLF. The directivity is increased by the number of loops used in the
array. Equations (6), (7), and (9) bear this out in that the beam width
and back lobes become smaller as the number of loops increases,

The two limiting factors that affect the directivity are effective height
and unequal voltages between loops. The very small effective heights of
the shorter arrays could make them impractical unless very large loops
are used. The most serious limitation on the directivity of an array with
a large number of loops is caused by the voltage-amplitude and phase
differences between loops. These differences between adjacent loops
will obscure the nulls and deteriorate the reception pattern. Equation
(11) shows that the differences add together as the number of loops is
increased. The feasibility of designing highly directive loop arrays will
depend on the accuracy with which the individual loops and delay lines
can be matched; this must be experimentally determir}ed.
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